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Abstract

A shell model for _nite elastic and _nite plastic strains is derived taking into account initial and induced
anisotropies[ A corresponding eight!node C9 shell element with three displacement and three director degrees!
of!freedom at each node is developed\ which combines the advantages of an isoparametric description of
geometry and deformation with an e}ective plane stress formulation[ The element accounts for isochoric or
approximately isochoric deformation due to _nite plastic strains[ Because of the three displacement and
three director degrees!of!freedom at each node\ it is easily possible to link di}erent parts of a composed
irregular shell structure or to connect the derived shell element with solid "brick# elements[

This paper presents the shell theory based on the kinematics of _nite elastoplasticity proposed in Schieck
and Stumpf "0884# and the special geometric concept of the derived shell model[ The Lagrange multiplier
method is applied to introduce into the virtual work principle the transverse normality constraint and the
condition of isochoric deformation\ where the Lagrange multipliers can be condensed inside the element
procedure[ Various assumed strain techniques designed to avoid the membrane locking are compared with
known methods in the literature[ According to the numerical experience so far the proposed shell _nite
element is free of locking e}ects and spurious modes[

Part II presents the constitutive equations for _nite elasticÐplastic strains accounting for initial and induced
anisotropies and the implementation of the model into the FE!code[ A comprehensive set of numerical
examples is provided\ involving the tension of a plane specimen with necking and shear!band localization\
the elasticÐplastic response of a simply supported plate with a localization of the plastic bending strains in
the four corner zones\ the elasticÐplastic deformation mode of the so!called Scordelis!Lo roof\ and the
elasticÐplastic buckling of a cylindrical shell showing an essential in~uence of the anisotropic material
behavior[ The results illustrate the performance of the proposed shell _nite element for a wide range of
engineering applications[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

While in the late seventies and eighties nonlinear shell theories were investigated taking into
account _nite rotations but small strains "e[g[ Pietraszkiewicz\ 0873\ 0878^ Nolte et al[\ 0875^ Valid\
0875^ Basžar and Kra�tzig\ 0878^ Gruttmann et al[\ 0878^ Basžar and Ding\ 0889^ Basžar et al[\ 0881^
Bu�chter and Ramm\ 0881^ Sansour and Bu~er\ 0881#\ main research e}orts in the analysis of shells
during the last couple of years were devoted to _nite strain models[ Shell theories for _nite elastic
strains were considered in Simmonds "0874\ 0875#\ Stumpf and Makowski "0875#\ Makowski and
Stumpf "0878\ 0889# and Schieck et al[ "0881#[ In the latter paper using a relaxed Kirchho}ÐLove
assumption accounting for the thickness change due to isochoric deformation of rubber!like
materials\ an arbitrarily shaped C0 shell element for _nite elastic strains was presented and applied
to analyse numerically various _nite elastic strain problems[

The needs of engineers call for the development of easily applicable isoparametric C9 shell
elements[ Most of them are four!node ~at quadrilateral elements and therefore\ they approximate
a curved shell as a facet structure[ Bathe and Dvorkin "0875#\ Huang and Hinton "0875#\ and
Huang "0876a\ b# proposed numerical techniques known as {assumed strain| methods\ which can
solve the problems of membrane and shear locking in four!\ eight! and nine!node quadrilateral
shell elements[ Their propositions were applied since then by many authors within the range of
small strain deformations[ Simo et al[ "0889# developed an isoparametric stress resultant four!
node shell element for _nite deformations[ The kinematics is based on a director model and
accounts also for the through!the!thickness stretching\ what is typically needed for all shells with
large strains[ Chroscielewski et al[ "0881\ 0886# presented four!\ nine! and 05!node quadrilateral
isoparametric six!parameter C9 shell elements based on a genuinely stress resultant formulation\
which is also capable to deal with large strains[ Recently\ Basžar and Ding "0886# presented a four!
node _ve!parameter isoparametric shell element for deformations with large elastic strains[ Their
approach uses a director model\ Euler angles for the rotation of the director\ and accounts for the
thickness change as a dependent property due to the isochoric behavior of rubber!like materials[

ElasticÐplastic shell models for small strains were proposed by Schmidt and Weichert "0878#
within a moderate rotation range and by Basžar and Weichert "0880# for _nite rotations[ Both
theories are based on an additive decomposition of the total strains into elastic and plastic parts\
what is possible only within the small strain range[ Associated _nite elements were not given[
Brank et al[ "0886# developed a four!node isoparametric element for _nite rotations and small
elasticÐplastic strains with isotropic hardening[

Based on the multiplicative decomposition of the total deformation gradient into elastic and
plastic parts according to Bilby et al[ "0844#\ Kro�ner "0859#\ and Lee "0858#\ Simo and Ortiz
"0874# and Simo "0877# presented a framework for _nite elastoplasticity using Lie derivatives as
objective rates[ The corresponding thermodynamics was considered by Le and Stumpf "0882#\ and
a generalization of the model for elastic and induced plastic anisotropies was given by Miehe
"0887a#[ Schieck and Stumpf "0884# proposed an alternative model of _nite strain elastoplasticity
based on a multiplicative decomposition of the total deformation gradient into Lagrangian and
Eulerian\ respectively\ elastic and plastic stretches and a uniquely de_ned rotation tensor using the
spin of this rotation tensor to construct the associated corotational rate[

Applying the Simo and Ortiz "0874# and Simo "0877# concept of _nite elastoplasticity\ Simo
and Kennedy "0881# developed a shell _nite element for large elasticÐplastic deformation without
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taking into account the change of the shell thickness caused by volume!preserving large plastic
deformations[ The element is restricted to isotropic material behavior[ Stumpf and Schieck "0883#
proposed a shell theory for _nite elastic and _nite plastic strains\ where the kinematics is based on
a relaxed Kirchho}ÐLove hypothesis allowing transverse normal materials _bers to be stretched
and bent\ whereas shear deformations are neglected[ Logarithmic membrane and bending strain
measures were introduced to enable an additive decomposition for superposed moderately large
strains "see also Schieck and Stumpf\ 0882#[ An associated shell _nite element was not given[ The
Simo concept of _nite elastoplasticity was applied also by Roehl and Ramm "0885# to analyse
shell problems for small elastic and large plastic strains and isotropic material behavior using
various _nite elements[ For shells made of viscoplastic material An and Kollmann "0885# derived
a theory for _nite deformations\ and Rouainia and Peric� "0887# presented theory and _nite element
applications for viscoplastic shells as well[ Recently\ Miehe "0887b# presented a eight!node brick!
type mixed _nite shell element for large elasticÐplastic deformations and isotropic material
behavior[ Several numerical examples were given for small elastic and large plastic strains[

The aim of this paper organized in two parts is to present a shell theory and a C9 shell _nite
element for the analysis of shells undergoing _nite elastic and _nite plastic strains taking into
account initial and induced anisotropies[ The underlying concept of _nite elastoplasticity is the
one published in Schieck and Stumpf "0884#[ Essential features and advantages of the derived shell
_nite element are as follows]

, To our best knowledge it is the _rst shell element for combined large elastic and large plastic
strains accounting for elastic and plastic anisotropies[

, It is a six!parameter shell model with three displacement degrees!of!freedom and three inde!
pendent director degrees!of!freedom per node[ Designed as an arbitrarily curved isoparametric
eight!node shell element it approximates curved structures better than faced!like four!node
elements[

, Shear and volume "change of thickness# locking is avoided by application of the Lagrange
multiplier technique for the normality constraint of the director orientation and for the director
length constraint due to "approximately# isochoric deformation[ The Lagrange multipliers can
be condensed inside the element procedure yielding numerically a pure displacement element[

, The membrane locking is overcome by application of assumed membrane strains that are _tted
to the strains computed from the displacements by the least square method[ Full numerical
integration is applied[ Thus\ no interpolation between more or less heuristically chosen sampling
points is needed[ Numerical investigations show the improved performance compared with
commonly used methods[

, The coupling with brick elements is easy and reliable\ because the motion of a point at the upper
or lower surface is a linear combination of the displacement of a node at the mid!surface and the
{deformation| of its director[ This allows us to connect easily sti}eners with the shell\ too[

, The coupling of parts of folded or multi shell structures can be achieved by prescribing the angles
between the directors\ e[g[ realized as constraints controlled by Lagrange multipliers[ In the range
of really large strains this seems to be more reliable than the use of rotation tensors or vectors\
because the rotation of a boundary line di}ers from the rotation of the material\ if the membrane
shear deformations parallel to the boundary are large[

, All tensors are given in Cartesian components referred to a material attached Cartesian coor!
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dinate system[ This is achieved by considering the Jacobian matrix of the isoparametric descrip!
tion of the element geometry as a _ctitious deformation gradient due to a _ctitious deformation
from a ~at rectangular reference con_guration to the undeformed initial con_guration[ Therefore\
the polar decomposition theorem can be applied on the _ctitious deformation gradient\ which is
the Jacobian matrix\ and the Cartesian reference frame can be rotated with the material into the
undeformed con_guration[ One can consider the components of tensors that are referred to the
rotated Cartesian reference as {convective Cartesian| "cC# components[

, The application of tensors in cC!components enables an e.cient plane stress description valid
also in the thin shell limit[

, The description of tensors in cC components allows us to apply back!rotated Lagrangian type
objective Cauchy or Kirchho} stresses that are easily accessible for engineers\ who want to
formulate and implement re_ned material models with initial and induced elastic and plastic
anisotropies\ anisotropic yield conditions and ~ow rules[

, The concept has a well de_ned interface to enable the easy implementation of other material
models[

This paper is organized as follows] in Section 1 we _rst recall the kinematics of _nite elastoplasticity
based on the multiplicative decompositions of the total deformation gradient into Lagrangian and
Eulerian\ respectively\ elastic and plastic stretches and a uniquely de_ned rotation tensor[ The
kinematical concept is then generalized by introducing a second reference con_guration with an
additional _ctitious deformation gradient\ which allows us to refer the initial undeformed and all
actual shell con_gurations to a ~at rectangular plate with Cartesian reference frames[ In Section 2
the kinematics of the shell _nite element is established[ In Section 3 we consider the virtual work
principle as basis for the construction of the shell _nite element and in Section 4 the associated
Lagrange multipliers[ In Section 5 assumed strain techniques are investigated and _nally\ in Section
6\ the results of linear and nonlinear convergence tests are presented[

In Part II the constitutive model with back!rotated Kirchho} stresses\ the elasticÐplastic return
algorithm for _nite strains and the numerical implementation will be discussed[ The presented
shell _nite element will be applied to analyse a comprehensive set of numerical examples as plane
bars with strain localization and necking\ a plate with bending strain localization at the four corner
zones\ a cylindrical shell with two zones of bending strain localization and the elasticÐplastic
buckling of a cylinder under torsion with anisotropic material behavior[

1[ Kinematics of _nite elastoplasticity with respect to the initial undeformed and an additional

reference con_guration

In this section\ we _rst recall some basic kinematic relations of _nite elastoplasticity according
to the constitutive model of Schieck and Stumpf "0884#\ and then we generalize the kinematics by
introducing an additional reference con_guration\ which is an appropriate tool to construct an
e.cient shell _nite element for large elastic and large plastic strains with initial and induced
anisotropies[ The kinematics is based on the multiplicative decomposition of the total deformation
gradient into elastic and plastic parts\ but constructed in such a way as to overcome the non!
uniqueness of this decomposition[
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According to Bilby et al[ "0884#\ Kro�ner "0859#\ and Lee "0858# the total deformation gradient
F can be decomposed into an elastic\ F e\ and a plastic\ F p\ contribution

F � FeFp\ "1[0#

where F e and F p are incompatible point functions[ Applying the polar decomposition theorem to
F e and F p and indicating stretches referred to the intermediate con_guration by a bar we have

Fe � ReUÞe � VeRe\ Fp � RpUp � VÞpRp\ "1[1#

where Re and Rp are the elastic and plastic rotations\ and UÞe\ Ve and Up\ VÞp the elastic and plastic\
respectively\ right and left stretch tensors[ Introducing "1[1# into "1[0# and de_ning the Lagrangian
elastic stretch Ue\ the Eulerian plastic stretch Vp\ and the composed rotation tensor Q by

Ue M RpTUÞeRp � QTVeQ\ Vp M QUpQT\ Q � ReRp\ "1[2#

we obtain the following two multiplicative decompositions\

F � QUeUp � VeVpQ\ "1[3#

alternative to the BilbyÐKo�rnerÐLee decomposition "1[0#[ Within a model of _nite elastoplasticity\
where constitutive and evolution laws are formulated for symmetric strain and stretch measures\
respectively\ the decompositions "1[3# are unique\ contrary to "1[0#[ Of course\ within such a model
the rotation tensor Q cannot be split uniquely into elastic and plastic rotations according to "1[2#2\
but this is not needed for the corresponding corotational rate formulation[

Using "1[3#0 the total right stretch tensor U\ following from the right polar decomposition
F � RU\ can be decomposed into Lagrangian elastic\ Ue\ and plastic\ Up\ stretches\

U � zFTF � zUpUe1Up\ "1[4#

from which the Lagrangian elastic stretch can be computed]

Ue � zUp−0U1Up−0[ "1[5#

Thus\ Ue is independent of the actual value of the plastic rotation Rp and depends only on the
Lagrangian total stretch U and the Lagrangian plastic stretch Up[ Correspondingly\ from "1[3#1

we derive the Eulerian decomposition of the total left stretch tensor V following from the left polar
decomposition F � VR\

V � zFFT � zVeVp1Ve\ "1[6#

which allows us to determine the Eulerian plastic stretch tensor Vp from the Eulerian total stretch
V and the Eulerian elastic stretch Ve]

Vp � zVe−0V1Ve−0[ "1[7#

From "1[5# and "1[7# it follows that the multiplicative decompositions "1[3# are unique[ It is easy
to prove that Ue and Up are Lagrangian objective and Ve and Vp Eulerian objective[

Let us denote the Kirchho} stress tensor referred to the actual con_guration by t and the
corresponding back!stress tensor describing the kinematical hardening of the material by a[ Then
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Fig[ 0[ Reference\ undeformed and actual con_gurations of the shell[

Fig[ 1[ Polar decompositions of the various deformation gradients and references of power!conjugate variables[

we can de_ne Lagrangian objective Kirchho} stresses t9 and back!stresses a9 referred to B	9 "see
Fig[ 1# by pull!back with Q\

t9 � QTtQ\ a9 � QTaQ[ "1[8#

The corresponding constitutive equations will be considered in Part II of this paper[
In the above derived equations we refer stretches and stresses either to the initial undeformed

con_guration B9 or to the actual con_guration Bt[ To construct an appropriate shell _nite element
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for _nite elastic and _nite plastic strains and to be able to use the plane stress assumption\ we
introduce now an additional reference con_guration B� such that the _ctitious deformation
gradient F f maps locally B� into the initial\ undeformed con_guration B9[ Then\ the composed
deformation gradient F�\

F� � FFf � FeFpFf\ "1[09#

maps locally the new reference con_guration B� into the actual con_guration Bt[ This enables us
to use an idea of Simo and Fox "0878# and to introduce a ~at rectangular plate with local Cartesian
reference frames "Fig[ 0# as new reference con_guration B� for an appropriate shell analysis[

By this procedure we can refer all Lagrangian! and Eulerian!type tensors to Cartesian coor!
dinates of the new reference con_guration B�\ what gives the tensor components a direct physical
meaning and avoids the use of Christo}el symbols[ Then\ the tensor calculus of the shell theory
reduces to simple matrix computations simplifying the programming work[ The linear map F f

needs to be compatible inside each element only\ provided the con_guration B9 of the undeformed
shell is compatible as a whole[ Thus\ the shell _nite element to be constructed has much in common
with an isoparametric element\ however with the di}erence that the Jacobian matrix is now treated
as the _ctitious deformation gradient F f[ Applying the polar decomposition theorem F f � RfUf\
we can determine the _ctitious initial rotation Rf and the _ctitious initial stretch Uf[ The _ctitious
initial rotation Rf allows one to rotate all tensors back to the material attached ~at rectangular
reference con_guration B�\ what is the main di}erence to the common isoparametric formulation\
and it enables us to use the plane stress assumption in the shell element[ The kinematics of _nite
elastoplasticity generalized by the introduction of the new reference con_guration B� is sketched
in Fig[ 1[

First\ we apply the polar decomposition theorem to the _ctitious deformation gradient F f and
obtain

Ff � RfUf � VfRf[ "1[00#

Corresponding to the eqns "1[2# we de_ne the following stretch and rotation tensors\

Ue
R M RfTUeRf � QT

RVeQR\ Up
R M QT

RVpQR\ QR M ReRpRf[ "1[01#

With "1[00# and "1[01# we obtain the right and left decompositions of F�

F� � QRUe
RUp

RUf � VeVpVfQR\ "1[02#

which is the generalization of the decompositions "1[3# of _nite elastoplasticity with one reference
con_guration[ Corresponding to "1[4# and "1[6# we derive the decompositions of the {total| stretches
U� and V�\

U� � zFT

�F� � zUfUp
RUe1

R Up
RUf\

V� � zF�FT

� � zVeVpVf1VpVe[ "1[03#

It can be proved easily "see e[g[ Ogden\ 0873# that all stretch tensors V are Eulerian objective and
all stretch tensors U are Lagrangian objective "una}ected by superposed rigid!body motion#[

In the kinematical picture of _nite elastoplasticity with the undeformed reference con_guration
B9 we de_ned by "1[8# Lagrangian objective Kirchho} stresses referred to B	9[ Correspondingly\
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introducing the second reference con_guration B� we have to pull!back t9 and a9 of eqns "1[8# by
Rf leading to the objective stress measures

tR � RfTt9R
f � QT

RtQR\ aR � RfTa9R
f � QT

RaQR[ "1[04#

Corresponding second PiolaÐKirchho} type stresses S� and back!stresses A� referred to the second
reference con_guration B� can be de_ned by

S� � F
�
−0tF

�
−T � Uf−0Up−0

R Ue−0
R tRUe−0

R Up−0
R Uf−0\

A � F
�
−0AF

�
−T � Uf−0Up−0

R Ue−0
R aRUe−0

R Up−0
R Uf−0[ "1[05#

Another useful set of second PiolaÐKirchho} type stresses is de_ned by "see Fig[ 1#

SR � Up−0
R Ue−0

R tRUe−0
R Up−0

R � UfS�Uf

AR � Up−0
R Ue−0

R aRUe−0
R Up−0

R � UfA�Uf[ "1[06#

To formulate the virtual work principle we have to de_ne the power!conjugate strain rates[ Power!
conjugate to the Kirchho} stress tensor t is the Eulerian deformation rate d\

d � 0
1
"Fþ�F

�
−0¦F

�
−TFþT

�# � 0
1
"FþF−0¦F−TFþT#\ "1[07#

where we have taken into account that F f is time!independent[ The strain rates associated with the
Kirchho} stress tensor "1[04#\ the second PiolaÐKirchho} stress tensors "1[05# and "1[06# are

DR � QT
RdQR � Ue−0

R Up−0
R Uf−0

R Eþ�Uf−0
R Up−0

R Ue−0
R \ "1[08#

Eþ� � 0
1
"FþT

�F�¦FT

�Fþ�# � FT

�dF� "1[19#

EþR � Up
RUe

RDRUe
RUp

R � Uf−0Eþ�Uf−0 � QfTFTdFQf\ "1[10#

where "1[10# is the rate of the Green!type strain tensor ER referred to the back!rotated undeformed
con_guration BR "see Fig[ 1#\

ER � RfT0
1
"FTF−0#Rf � Uf−00

1
"FT

�F�−FfTFf#Uf−0[ "1[11#

The corresponding right stretch tensor UR �"0¦1ER#0:1\ following from back!rotation with Rf of
the stretch tensor U according to "1[4#\ has an elastic plastic decomposition as follows]

UR � RfTURf � zUp
RUe1

R Up
R[ "1[12#

With the above derived stresses and corresponding strain and strain rates\ respectively\ we have
introduced a set of Lagrangian objective variables that describe the stress state and the deformation
of the shell in a material con_guration with local Cartesian coordinates\ and we are able to use a
plane stress state to analyse arbitrary shells undergoing _nite elasticÐplastic strains[ Also due to
the Cartesian reference\ the formulation of constitutive equations does not require essential knowl!
edge of modern tensor calculus\ which makes this work easily accessible to engineers[
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2[ Kinematics of the shell element

The kinematics of the shell element consists of three mid!surface displacement components and
three director components as basic kinematical unknowns[ The position vector of any material
point X"Xa\ z#\ a $ "0\ 1#\ z 0 X2\ in the ~at\ rectangular reference con_guration B� of the shell
space is given by

X"Xa\ z# � X0e0¦X1e1¦ze2 � X"Xa\ 9#¦zT"Xa#\ "2[0#

where e0\ e1\ e2 are Cartesian base vectors in the reference con_guration with e2 0 T as the director
on the mid!surface[ With H we denote the thickness of the shell in the Cartesian reference
con_guration B�\ and z $ ð−H:1\ H:1Ł is the corresponding coordinate[ In the undeformed con!
_guration B9 the position vector becomes

x9"Xa\ z# � x9"Xa\ 9#¦zt9"Xa# "2[1#

with t9 as undeformed director[ The director length =t9= is given by the ratio of the thickness h9 of
the undeformed shell to the reference thickness H] =t9= � h9:H[ If one assumes the transformation
from the reference con_guration B� into the undeformed con_guration B9 to be isochoric and
transverse orthogonal\ =t9= is given by H:h9 � 0:=t9= � =1:1X0x9=z�9×1:1X1x9=z�9=[ In the actual
con_guration the position vector becomes

x"Xa\ z# � x"Xa\ 9#¦zt"Xa# "2[2#

with t as the actual director[ From "2[0#Ð"2[2# the {total| displacement _eld u� and the physically
real displacement _eld u are obtained as

u�"Xa\ z# � x"Xa\ 9#−X"Xa\ 9#¦z"t"Xa#−T"Xa## "2[3#

and

u"Xa\ z# � v"Xa\ 9#¦z"t"Xa#−t9"Xa##[ "2[4#

In order to ensure high accuracy also in the small deformation limit\ the real physical mid!surface
displacement

v"Xa# � x"Xa\ 9#−x9"Xa\ 9# "2[5#

and the real physical director di}erence "{displacement|# t"Xa#−t9"Xa# must be introduced instead
of x"Xa\ 9# and t"Xa# as primary unknowns[ Analogously\ we de_ne the _ctitious {initial dis!
placement| vf of the undeformed con_guration ratio by

vf "Xa# � x9"Xa\ 9#−X"Xa\ 9#[ "2[6#

In the chosen eight!node shell element each node has three degrees!of!freedom for each of the
displacements v and vf of the mid!surface and three degrees!of!freedom for each of the director
di}erences t−t9 and t9−T[ The mid!surface displacements are interpolated in the usual manner
with bi!quadratic shape functions[ They are complete up to the quadratic order\ what is important
for the performance of the element\ and additionally they have some cubic terms[ For the director
di}erences t−t9 and t9−T\ we apply a more re_ned interpolation in order to enable both\ high
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accuracy in the case of bending deformations with distorted meshes and the calculation of discrete
jumps of t9 and t due to jumps of the shell reference thickness H in the reference con_guration
B� but with continuous true thickness[ For this purpose we de_ne the normalized director
di}erences

t? �
H
h9

"t−t9# and t?9 �
H
h9

"t9−T#[ "2[7#

They are interpolated in the usual manner with bi!quadratic shape functions like the mid!surface
displacements[ The distribution of the ratio H:h9 between the nine Gaussian quadrature points of
the element is approximated by bi!quadratic interpolation\ too[ Then 9"t−t9# and 9"t9−T# 0 9t9\
needed in the sequel\ become

9"t−t9# �
h9

H
9t?¦t? & 9 0

h9

H1\ 9t9 �
h9

H
9t?9¦t?9 & 9 0

h9

H1\ "2[8#

where 9"h9:H# can be obtained from the interpolation of H:h9 as 9"h9:H# � −"h9:H#19"H:h9#[
However\ since eqns "2[8# are applied only in eqn "2[02# for XR and derived variables\ one can show
that the underlined terms do not contribute to XR and its derivatives\ if transverse orthogonality is
taken into account[ Therefore\ in the _nite element program code they can be omitted[

The orthogonality condition of the directors and the control of the director length due to
"approximately# isochoric deformation are introduced as constraints into the variational principle
with the help of Lagrange multipliers\ which will be outlined in the next section[ This leads to
additional degrees of freedom in the nodal points of the shell element[ However\ as it will also be
discussed in the next section\ it is possible to eliminate them on element level[ By this procedure
the element is reduced to a pure displacement element\ which makes its introduction into standard
_nite element program packages possible[

From the {plane| deformation gradients

Ff �
1x9

1Xa
& ea � 9x9"Xa\ 9#¦z9t9"Xa# � 0¦9vf¦z9t9 "2[09#

and

F� �
1x

1Xa
& ea � 0¦9vf¦9v¦z9t\ "2[00#

the plane Green strain tensor ER referred to the con_guration BR "see Fig[ 1# can be calculated
according to eqn "1[11#1\ yielding

ER � 0
1
Uf−0ð"9vT¦z9"t−t9#T#"0¦9vf¦z9t9#¦"0¦9vT

f ¦z9tT9#"9v¦z9"t−t9##

¦"9vT¦z9"t−t9#T#"9v¦z9"t−t9##ŁUf−0\ "2[01#

where Uf �"F fTF f#0:1[ By series expansion with respect to the z!coordinate the expression
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ER � gR¦zxR¦higher!order terms "2[02#

can be obtained\ where

gR � Uf−0
"9# gUf−0

"9# \ g � 0
1
ð9vT"0¦9vf#¦"0¦9vT

f #9v¦9vT9vŁ "2[03#

denotes the Green membrane strain tensor\ and

xR � 0
1
Uf−0

"9# ð9"t−t9#T"0¦9vf#¦"0¦9vT
f #9"t−t9#

¦9vT9t¦9tT9v−1Uf
"0#U

f−0
"9# g−1gUf−0

"9# Uf
"0#ŁUf−0

"9# "2[04#

is the Green bending strain tensor[ In the above equations

Uf
"9# M Uf

=z �9 � z"0¦9vf#T"0¦9vf# "2[05#

stands for the _ctitious {initial stretch| of the mid!surface and Uf
"0# M 1Uf:1z=z�9 for the thickness

derivative of the {initial stretch| at the mid!surface[ The latter one can be obtained solving the
equation

Uf
"9#U

f
"0#¦Uf

"0#U
f
"9# �"0¦9vT

f #9t9¦9tT9 "0¦9vf# "2[06#

for Uf
"0#[ Due to the estimations in Schieck and Stumpf "0883# the higher!order terms in the series

expansion of the strain distribution "2[02# with respect to the thickness direction can be neglected[
For the derivation of the incremental form of the internal virtual work the _rst variations\ dgR\

dxR\ and the second variations\ DdgR\ DdxR\ of gR and xR are needed[ With D and d denoting
independent variations due to independent virtual changes of the deformation and director defor!
mation _elds\ we obtain

dgR � Uf−0
"9# dgUf−0

"9# "2[07#0

with

dg � 0
1
"d9vT"0¦9vf#¦"0¦9vT

f #d9v¦d9vT9v¦9vTd9v#\

dxR � 0
1
Uf−0

"9# "d9tT"0¦9vf#¦"0¦9vT
f #d9t¦d9vT9t¦9vTd9t¦9tTd9v¦d9tT9v "2[07#1

−1Uf
"0#U

f−0
"9# dg−1dgUf−0

"9# Uf
"0##Uf−0

"9# \ "2[08#

DdgR � Uf−0
"9# DdgUf−0

"9# with Ddg � 0
1
"d9vTD9v¦D9vTd9v#\ "2[19#

DdxR � 0
1
Uf−0

"9# "d9vTD9t¦D9vTd9t¦D9tTd9v¦d9tTD9v

−1Uf
"0#U

f−0
"9# Ddg−1DdgUf−0

"9# Uf
"0##Uf−0

"9# [ "2[10#

The advantage of choosing ER � gR¦zxR according to eqns "1[11# and "2[02# as strain measure in
the shell referred to the back!rotated undeformed con_guration BR instead of the Green strain
measure E � g¦zx referred to the real undeformed con_guration B9 is the fact that the former
enables the application of Cartesian tensor components and an e}ective plane stress description
due to the local material!attached Cartesian reference frames[
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3[ Variational principle

As basis for the construction of the shell _nite element the Lagrangian virtual work principle is
used[ We extend the internal virtual work by introducing the transverse normality constraint and
the condition of isochoric deformation with the help of Lagrange multipliers[ Then the total virtual
work VW is composed of the internal virtual work IVW\ the extensions XVW of the internal
virtual work due to the Lagrange multiplier constraints\ and the external virtual work EVW\

VW � IVW¦XVW¦EVW[ "3[0#

According to the virtual work principle the total virtual work VW vanishes for equilibrium states[
The internal virtual work density is given by the scalar product of a stress tensor with its power!

conjugate objective strain rate\ e[g[ S = dE � S� = dE� � SR = dER � t = d"dF# � tR = D"dF#R\ where
the index "dF# of d and D denotes that they are computed from dF instead of Fþ[ In the incremental
form one of the following equal valued expressions DS = dE¦S = DdE � DS� = dE�¦S� =

DdE� � DSR = dER¦SR = DdER � Dt = d"dF#¦t = Dd"dF# � DtR = D"dF#R¦tR = DD"dF#R have to be
calculated\ where D denotes another variation of the deformation independent of the variation d[
If a Lagrangian form of the internal virtual work is chosen\ e[g[ S = dE � S� = dE� �
SR = dER � tR = D"dF#R with Lagrangian objective tensors\ the variations D of them can be cal!
culated easily like a material time derivative[ In the Eulerian form t = d"dF#\ Dt and Dd"dF# have
to be computed as Lie!derivatives or as a co!rotational rate according to Schieck and Stumpf
"0884#[

In the following the Lagrangian form SR = dER is chosen to represent the internal virtual work
density[ The reference con_guration is then the back!rotated underformed con_guration BR "see
Fig[ 1#[ Since Uf is constant during the really physical deformation process\ this con_guration is a
Lagrangian reference[ The stresses NR and stress couples MR\ which are work!conjugate to dgR

and dxR\ are computed from SR as

NR � g
H:1

−H:1

SR"z# dz "3[1#

and

MR � g
H:1

−H:1

SR"z#z dz\ "3[2#

where H is the shell thickness in the reference con_guration B�[ H can be obtained from the
thickness in the undeformed con_guration due to the condition\ that the _ctitious initial defor!
mation with the gradient F f is isochoric[ Then IVW becomes

IVW � gV

SR = dER dV � gA

"NR = dgR¦MR = dxR# dA\ "3[3#

where A is the area of the mid!surface in the reference con_guration B�[
The normality constraint\ demanding the actual director t to be perpendicular to the mid!

surface\ is tF�=z�9 � 9\ because F�=z�9 as the plane mid!surface gradient "2×1!matrix# contains the
actual convective tangent vectors at the mid!surface[ The isochoric constraint is det F"2×2#

�=z�9 � 0\
where F"2×2#

�=z�9 � F�=z�9¦t & e2 is the full three!dimensional deformation gradient at the mid!surface
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with e2 as the Cartesian base vector in the third direction[ In order to avoid residual stresses in the
elements\ which would disturb the computations with very small deformations\ the normality
constraint must be checked to tF�=z�9 � t9F

f
=z�9\ because due to the continuity of the undeformed

geometry of a _nite element discretization\ t9F
f
=z�9 cannot be exactly zero in all integration points

of all elements[ Analogously\ the isochoric constraint should be checked to
det F"2×2#

�=z�9 � det Ff"2×2#
=z�9 \ where Ff"2×2#

=z�9 � Ff
=z�9¦t9 & e2[ Then the extensions to the virtual work

principle are

XVW � gA

dð"tF�=z�9−t9F
f
=z�9# = l¦h"det F"2×2#

�=z�9−det Ff"2×2#
=z�9 #Ł dA

� gA

ð"tF�=z�9¦t9F
f
=z�9# = dl¦t = d9v = l−dt = F�=z�9 = l

¦dh"det F"2×2#
�=z�9−det Ff"2×2#

=z�9 #¦h tr"dF"2×2#
�=z�9F"2×2#−0

�=z�9 # det F"2×2#
�=z�9 Ł dA\ "3[4#

where l is the Lagrange multiplier vector that controls the transverse normality constraint\ and h

is the Lagrange multiplier that controls the change of the director length due to the incompressibility
constraint[ With dl and dh we denote the variations or virtual changes of l and h[

Applying the Gaussian divergence theorem to IVW¦XVW one can see that =t=1F�=z�9l is the
"approximated# Cauchy transverse shear force vector "in convective Cartesian components# and
that h:H is a superposed hydrostatic pressure[ The second PiolaÐKirchho} transverse shear force
vector is obtained by pull!back as =t=l[ For small elastic transverse shear deformations the cor!
responding shear deformation energy is then

Wshear � ga

9[5
Gh

l = U1

�"9#l=t=3 da � gA

9[5
GH

l = U1

�"9#l=t=1 dA\ "3[5#

where U1
�"9# � FT

�=z�9F�=z�9 is the squared {total| stretch of the mid!surface and the covariant metric
of the mid!surface\ respectively[ In "3[5# da is the actual mid!surface area element\ h the actual
shell thickness and G the shear modulus[ Additionally\ we have h:H � =t= � dA:da\ what holds
exactly for isochoric deformations only\ and shear correction factor of 0[1 has been taken into
account[ If for the condensation of l some lower accuracy is acceptable\ the transverse shear
deformation energy can be approximated by

Wshear ¼ gA

9[5
GH

l = Uf1
"9#l=t9 =1 dA[ "3[6#

According to the physical meaning of h\ the bulk energy Wbulk for small elastic volume changes is

Wbulk � gA

h1

1EbH
dA\ "3[7#

where Eb denotes the bulk modulus[
Introducing into the virtual work principle the variation of the negative transverse shear defor!

mation energy and the variation of the negative bulk energy we obtain
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VW � IVW¦XVW−dWshear−dWbulk¦EVW\ "3[8#

which leads to a virtual work expression of HellingerÐReissner type[ Herewith\ the Lagrange
multipliers can be considered as independent stress _elds according to the previously derived
physical meaning\ and they can be condensed for a wide range of the parameters[ Within this
extension\ transverse shear deformations for moderately thick shells are taken into account\ which
is appropriate for elastic shells[ However\ for elasticÐplastic deformations and when the shell
thickness increases to moderate size\ this way of introducing the transverse shear stress and the
corresponding shear deformation is not a real improvement\ because this approach is unable to
take into account the real distribution of the transverse shear stresses over the thickness and its
disorder due to plastic ~ow[ Therefore\ the transverse shear stresses cannot be introduced into the
yield condition appropriately[ For thin shells this does not in~uence the results essentially because
of the relatively small values of the transverse shear stresses[

The impossibility of a realistic modelling of transverse elasticÐplastic shear deformations in a
shell element is the reason\ why the authors decided to exclude transverse shear deformations by
the use of Lagrange multipliers[ However\ then one has to accept them as additional nodal degrees
of freedom on the system level outside the element procedure\ because their elimination on the
element level reintroduces transverse shear deformations[ Of course\ instead of using Lagrange
multipliers or mixed methods\ one could also apply assumed strain techniques to avoid the shear
locking[

After introducing the bulk energy into the variational principle\ the shell _nite element accounts
also for moderately large changes of the volume due to moderately large non!isochoric elastic
strains[ Here\ for plane stress material models an assumed strain technique is not possible[

Since the external virtual work of the present shell model does not di}er from the common
ansatz "see e[g[ Stumpf and Schieck\ 0883#\ it will not be considered here[ Only the hydrostatic
pressure load p needs some comment[ To formulate the pressure load it was found that the
application of the actual director t leads to a weak convergence ratio in the NewtonÐRaphson
iterations[ Therefore\ it is preferable to use the following form

EVWpress � −gA

p 0
1x

1X0 bz�9

×
1x

1X1 bz � 91 = dv dA\ "3[09#

where 1x:1X0\ 1x:1X1 are the actual convective tangent vectors included in the _rst two columns
of the matrix F�[ With a cross we denote the usual vector product of two vectors[

For the derivation of the sti}ness matrix the incremental form of VW is needed[ With D and d

denoting independent variations with respect to virtual changes of the deformation and Lagrange
multipliers\ the incremental total virtual work DVW becomes

DVW � DIVW¦DXVW−DdWshear−DdWbulk¦DEVW[ "3[00#

For dead loads\ the incremental external virtual work DEVW vanishes and for DIVW and DXVW
we obtain

DIVW � gA

"DNR = dgR¦DMR = dxR¦NR = DdgR¦MR = DdxR# dA\ "3[01#

and
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DXVW � gA

""DtF�=z�9¦tD9v# = dl¦"dtF�=z�9¦td9v# = Dl¦"Dtd9v¦dtD9v# = l

¦ðdh tr"DF"2×2#
�=z�9F"2×2#−0

�=z�9 #¦Dh tr"dF"2×2#
�=z�9F"2×2#−0

�=z�9 #Ł det F"2×2#
�=z�9

¦hðtr"dF"2×2#
�=z�9F"2×2#−0

�=z�9 # tr"DF"2×2#
�=z�9F"2×2#−0

�=z�9 #

−tr"dF"2×2#
�=z�9F"2×2#−0

�=z�9 DF"2×2#
�=z�9F"2×2#−0

�=z�9 # det F"2×2#
�=z�9 Ł# dA[ "3[02#

The expressions for DdWshear\ DdWbulk and DEVWpress are not presented here\ because they can be
calculated without problems[

4[ Shape functions for the Lagrange multiplier _elds

The shear locking is avoided by introducing the transverse normality constraint into the variation
principle "3[0# and "3[4#\ receptively\ with the help of a two!dimensional vector _eld l as Lagrange
multiplier[ However\ the trial functions for the components of l should not have more degrees!of!
freedom than the trial functions for the components of the director t[ Spurious modes of bending
are circumvented\ if the trial functions for l have not less degrees!of!freedom than the gradient of
the transverse mid!surface displacement _eld[ Optimal ~exibility is obtained\ if one uses only the
minimum number of degrees!of!freedom[ According to the usual interpolation functions for
geometry and displacements that are applied in the present eight!node shell element\ the gradient
of the transverse mid!surface displacement has eight degrees!of!freedom\ which requires four
degrees!of!freedom for each component of l[ Since the _rst components of the mid!surface
displacement gradient 9v are continuous over the element edges that are parallel to X0\ and the
second components of 9v are continuous over the element edges that are parallel to X1 "where X0\
X1 are the element mid!surface coordinates\ see Section 2#\ it is advisable to choose the same
continuity for the corresponding Lagrange multiplier _eld l[ This means that l0 is continuous over
the element boundaries in the X1!direction and l1 is continuous in the X0 direction[ This guarantees
that there is always exactly the same number of degrees!of!freedom for l and for components of
the gradient of the transverse mid!surface displacement[ This special continuity can easily be
achieved\ if the nodal degrees!of!freedom for l0 are placed in the mid!nodes of the edges parallel
to X0 and analogously those for l1 in the mid!nodes of the edges parallel to X1[

Since\ physically speaking\ not l but the second PiolaÐKirchho} shear force vector =t=l 0h:Hl

is continuous across the element boundaries\ the numerical accuracy of the element can be
increased\ if one chooses the above mentioned interpolation and continuity for l? M h9:Hl[ There\
the continuity of h:h9 � =t=:=t9= is taken into account with given C9 continuity of the director _eld[

In order to avoid volume "or thickness# locking\ the constraint of isochoric deformation is also
introduced into the variational principle "3[0# and "3[4#\ respectively\ using h as a Lagrange
multiplier _eld[ Since in each node the director length should be adjusted to the determinant of
the mid!surface deformation gradient\ each node gets the nodal value of h as an additional degree!
of!freedom[ In this way\ there are always as many directors\ the lengths of which must be adjusted\
as there are Lagrange multipliers to achieve this[ The interpolation function for h is the same as
the one used for the displacement components and director displacements[ Since h:H is the
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superposed hydrostatic pressure\ the numerical accuracy of the element can be increased\ if one
chooses h? M h:H as nodal degree!of!freedom and also for the corresponding interpolation[

After introducing the shear deformation energy as outlined in Section 3 the condensation of l

on the element level is easy to implement[ However\ the condensation of h leads to sti}ening e}ects
for coarse element meshes[ This can be circumvented\ if for h a bi!linear interpolation instead of a
bi!cubic interpolation is applied[ In this case spurious modes in thickness changes can be avoided
by introducing into the variational principle an additional energy term according to the gradient
of the thickness change[ An appropriate choice is

Wgradthick � g k
GH2

13t9 = t9
"t9"t−t9## = Uf−1

"9# ="t9"t−t9## dA\ "4[0#

where k is a scaling factor[ Due to our numerical experience it should be chosen between 9[90 and
9[4\ where in most cases good results were obtained for k � 9[0[

5[ Assumed membrane strains

In the shell _nite element presented in this paper the membrane locking is avoided by applying
assumed membrane strain _elds[ The most common approach is that of Bathe and Dvorkin "0875#[
However\ in this and other related papers no theoretical background is given for the choice of the
so!called sampling points used for the strain interpolation[ Therefore\ we investigate in this paper
how to construct appropriately assumed strain _elds and how to _t them to the strains computed
{exactly| from the deformations[

Membrane locking occurs only in curved thin!walled shell structures\ and it is of practical
signi_cance in low!order elements[ In elements with shape functions of _fth! or higher!order the
locking plays no signi_cant role[ From the engineering point of view\ the origin of membrane
locking is the fact that because of the low!order approximation of the geometry of deformation
the element is unable to perform membrane!strain!free bending modes[ This causes us to construct
and _t the assumed membrane strain _elds so that the element can perform bending modes but
without exhibiting spurious modes[

These remarks suggest that there must exist essential restrictions for the assumed membrane
strain _elds[ As minimal requirement the assumed membrane strain _eld should have at least as
many free parameters as the in!plane deformation _eld minus 2 in!plane rigid!body motions[ For
the present eight!node element this means 7×1 in!plane deformations minus 2 in!plane rigid!body
motions\ what makes a minimum of 02 free parameters for the assumed membrane strain _eld[
The other bound is obtained from the requirement that the element should be able to perform
some "at least two or three# membrane!strain!free bending modes[ This implies the following
calculation] eight nodes with three translatoric displacements minus 5 spatial rigid!body motions
leads to 07 di}erent deformation modes[ Since two or\ better\ three modes should be without
membrane strains\ one obtains a maximum number of 05 or\ better\ 04 free parameters for the
assumed membrane strain _eld[

In the present element the assumed strain approach is applied to the Green membrane strains g

de_ned in eqn "2[03#1[ These membrane strains are also present in the bending strain tensor "2[04#[
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The approach of Bathe and Dvorkin "0875#\ which is programmed in our FE!Code as one of
various assumed strain techniques\ has 05 free parameters\ i[e[ the strains in the sampling points
for the interpolation of the assumed membrane strain _eld[ Another approach is the one of Huang
and Hinton "0875#\ which\ applied to eight!node elements\ has also 05 free parameters\ i[e[ the
coe.cients of the shape functions of the assumed strains[ Again\ the arrangement of sampling
points plays an important role[ However\ the choice of number and position of the sampling points
seems to be only due to the numerical experience of the authors in both approximation procedures[
This was the reason for us to reconsider this problem[

One may ask\ why a selective reduced integration of the membrane strain energy is not applied
here[ According to the authors experience\ there is no reduced integration scheme known for the
membrane energy that does not have instabilities like spurious modes\ if no additional stabilization
procedure is applied[ This fact can easily be explained taking e[g[ 1×1 point integration\ as it is
implemented in several commercial eight!node shell element codes[ For this purpose let us consider
an elastic ~at sheet[ Then one element has eight nodes times two in!plane deformations minus 2
in!plane rigid!body motions yielding 02 independent deformation modes[ In the case of plane
stress the deformation energy depends on the three independent components of the symmetric
plane strain tensor[ Using a 1×1 point integration the membrane energy of the element is computed
from four nodes times three strain components yielding 01 scalar values[ Thus\ the deformation
energies of the above mentioned 02 independent deformation modes are mapped on 01 scalars[
The result is\ that there is 0 � 02−01 independent deformation modes that do not change the
components of the strain tensor in any integration point[ This is exactly the reason for a spurious
mode[

As our _rst alternative procedure of assumed membrane strains we propose the following
approach with 02 free parameters\ a0Ða4\ b0Ðb4 and c0Ðc2]

gas
00"X\ Y# � a0¦a1X¦a2Y¦a3XY¦a4"Y#1\ "5[0#

gas
11"X\ Y# � b0¦b1X¦b2Y¦b3"X#1¦b4XY\ "5[1#

gas
01"X\ Y# � c0¦c1X¦c2Y¦0

3
a3"X#1¦"a4¦b3#XY¦0

3
b4"Y#1[ "5[2#

Here\ X 0 X0 and Y 0 X1 are the element mid!surface coordinates in the reference con_guration
and gas

ij are the components of the approximated _eld of the Green membrane strain tensor de_ned
in eqn "2[03#1[ The _elds for the components of the assumed strains are coupled as in the
geometrically linear eight!node plane sheet element[ The assumed strain _eld is _tted to the strain
_eld computed from the displacements by a least square method using full numerical integration[
This implies that the expression

gA

"gas−g# = C ="gas−g# dA "5[3#

has to be minimized\ where g denotes the strains that are directly computed from the displacement
_eld[ Since expression "5[3# is a quadratic form\ a constant transformation matrix between the
computed strains g and the assumed strains gas in the integration points is obtained[ For C the
elasticity tensor or any other appropriate symmetric fourth!order tensor can be chosen\ e[g[ the
fourth!order unity tensor[
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As our second alternative procedure the assumed strain components gas
00 and gas

11 are taken as
above\ but gas

01 is approximated now independently of gas
00 and gas

11 as

gas
01"X\ Y# � c0¦c1X¦c2Y¦c3XY[ "5[4#

This approach has 03 free parameters and has similarities with the strain distribution of Bathe and
Dvorkin "0875#[ As in our _rst proposition the assumed strain _eld is _tted by the least square
method[

6[ Convergence tests

In order to demonstrate the performance of the proposed shell element\ we present here the
numerical results of the patch test\ of the analysis of the thin hemispherical shell with hole according
to MacNeal and Harder "0874# and of the moderately thin hemisphere of Simo and Kennedy
"0881#[

First\ let us consider our results of the patch test proposed by MacNeal and Harder "0874# for
membrane and bending deformations[ The geometrical properties and boundary conditions are
shown in Fig[ 2[ The results of the membrane patch test are given in Table 0[ there one can see
that without assumed strain technique\ which is not needed for ~at problems\ the relative errors
in the solution are zero "in a numerical sense#[ Applying assumed membrane strains there are
numerical errors in the range of some percent[ For the present element this is not surprising\
because the strain tensor components are referred to material!\ i[e[ element!\ attached convective
Cartesian components\ and the element geometry is nonlinear generating large in!plane rotations
of the local Cartesian reference frames[ Therefore\ the assumed strain techniques cut o} always

Fig[ 2[ Patch test] geometry and boundary conditions[
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Table 0
Membrane patch test] maximum and averaged relative errors

Method
max =DgRI =

gRI

max =DgRII =
gRI

X
0
n

s
n

Dg1
RI

gRI

X
0
n

s
n

Dg1
RII

gRI

Without assumed strains 6[658 = 09−6 1[894 = 09−6 6[386 = 09−6 1[370 = 09−6

Method 1] 03 parameters 9[9250 9[9159 9[9019 9[9092
BatheÐDvorkin method 9[9315 9[9320 9[9003 9[9052
HuangÐHinton method 9[9737 9[0609 9[9314 9[9408

Analytical principal membrane strains] gRI � 9[9904\ gRII � 9[9994[

higher order contributions of the strain distribution\ which are needed to gain the exact solution[
It is interesting to see that the assumed strain method proposed by the authors produces smaller
relative errors than the established methods of BatheÐDvorkin and HuangÐHinton[ From an
engineering point of view a relative error in the range of 2) is always acceptable\ especially\ when
the average error is only about 0)[ Additional tests for meshes that are distorted so strongly that
some quads degenerate to triangles with curved edges\ show that the errors do not increase
signi_cantly[ For more regular meshes\ e[g[ 2×2 elements with approximately parallel edges\ the
errors vanish with increasing regularity[

The results of the bending patch test are shown in Table 1[ Again the relative errors are acceptable
from an engineering point of view[ It was found that the distorted mesh cannot meet the analytical
solution for the transverse displacements in all integration points exactly[ Only a nine!node element
could be able to do this[ With increasing thickness this error decreases due to the diminishing
in~uence of the transverse orthogonality constraint on the deformation of the patch[ Again\ tests
were made for meshes that are distorted so much that some quads degenerate to triangles with
curved edges[ It was found that the errors did not increase signi_cantly[ For regular meshes with
approximately parallel element edges the errors vanish[

Next\ the convergence of the linear solution due to mesh re_nement is analysed considering the

Table 1
Bending patch test] maximum and averaged relative errors

Thickness] h
max =DERI =

ERI

max =DERII =
ERI

X
0
n

s
n

DE1
RI

ERI

X
0
n

s
n

DE1
RII

ERI

9[990 9[91374 9[91043 9[90122 9[90153
9[90 9[91219 9[91913 9[90052 9[90079
9[0 9[99257 9[99188 9[99075 9[99045

Analytical principal bending strains] ERI � 9[64 = 09−2 h\ ERII � 9[14 = 09−2 h[
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Fig[ 3[ Thin hemispherical shell with hole] convergence of the linear solution due to mesh re_nement[

hemispherical shell with a hole\ which has been investigated _rst by MacNeal and Harder "0874#[
The results are shown in Figs 3Ð8[ In Fig[ 3 the convergence of our _nite element with the proposed
assumed strain method 1 with 03 free parameters "see Section 5# is compared with the solutions
published in MacNeal and Harder "0874# using the NASTRAN QUAD7 element with selective
reduced integration\ with the solutions according to Huang and Hinton "0875#\ Huang "0876a\ b#\
and with the S97 shell element of Stander et al[ "0878# with uniformly reduced integration[ It is
seen that our element shows a good performance also for relatively coarse meshes without and
with condensation of the Lagrange multipliers l and h[ Solutions without sti}ening e}ects also for
extreme coarse meshes are known only for four!node elements[

In Fig[ 4 the convergence behavior of the assumed strain technique implemented in the presented
shell element is investigated[ Our proposed assumed strain method 1 with 03 parameters seems to
be the best one\ followed by the HuangÐHinton method[ Our proposed method 0 with 02 par!
ameters shows comparable performance\ for rather coarse meshes better\ for medium coarse ones
worse\ but still better than the well!established BatheÐDvorkin method[ Solutions without applying
any assumed strain or reduced integration methods have such weak convergence that they are not
presented here[

In Fig[ 5 the sti}ening in~uence of condensation of the Lagrange multipliers is shown[ It is seen
that the slightly too weak solutions for medium coarse meshes appear only\ if the Lagrange
multipliers l for the control of the normality of the directors are not condensed on element level[
The reason is the fact that without condensation of l the corresponding nodal degrees!of!freedom
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Fig[ 4[ Thin hemispherical shell with hole] convergence due to di}erent assumed strain methods[

of l are the same as those of neighboring elements\ which is not the case\ if condensation on
element level is performed[ Thus\ with the condensation of l the normality constraint of the
directors is stronger enforced[

Figure 6 shows the convergence of mesh re_nement for the nonlinear elasticÐplastic analysis of
the previous sample[ Our proposed assumed strain method 1 without condensation was always
applied[ The need of _ner meshes than 7×7 for larger deformations is mainly required by the
strong bending e}ects near the loading points 0 and 1[ Measurements of the mean curvatures and
estimations of the characteristic wave lengths of boundary bending e}ects there give an advice for
the reliable maximal element size at these places[ One should take into account that an eight!node
C9 _nite shell element can represent typically only bi!linear distributions of the bending moment[
Therefore\ optimal low!cost performance can be achieved with non!uniform meshes\ which are
re_ned at the boundaries and in the regions of strong bending[ In the case of too coarse meshes
the strain distributions across the element boundaries will lead to jumps[ But in this case the mesh
is always too coarse to be able to represent appropriately the boundary bending e}ects\ because
from the engineering point!of!view one needs at least two elements for one half of the characteristic
wave length[ This fact is well known in the applications of _nite shell elements[

In Figs 7 and 8 the in~uence of a decreasing ratio of shell thickness to radius h:R on the mesh
convergence is represented[ The corresponding geometry and boundary conditions are shown in
Figs 3 and 4\ only the thickness is altered[ The dimensionless linear solutions for various meshes
using the proposed assumed strain method 1 with 03 parameters without and with condensation
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Fig[ 5[ Thin hemispherical shell with hole] in~uence of the Lagrange multiplier condensation on the convergence[

Fig[ 6[ Thin hemispherical shell with hole] elasticÐplastic solutions[
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Fig[ 7[ Thin hemispherical shell with hole] linear solutions of various meshes for decreasing thickness[

Fig[ 8[ Thin hemispherical shell with hole] linear solutions of di}erent assumed strain methods for decreasing thickness[



B[ Schieck et al[ : International Journal of Solids and Structures 25 "0888# 4288Ð43134311

Fig[ 09[ Moderately thin hemisphere] elasticÐplastic analysis[

of Lagrange multipliers are shown in Fig[ 7[ One recognizes that a reduction of the relative
thickness by the factor 09 needs a mesh re_nement of factor 1 in each direction[ In Fig[ 8 the
dimensionless linear solutions for the proposed assumed strain method 1 with 03 parameters\ for
the BatheÐDvorkin and for the HuangÐHinton method are shown using three di}erent meshes
with 1×1\ 3×3 and 05×05 elements[ One can easily recognize that the method proposed in the
present paper has the best performance[

The last sample shown in Fig[ 09 is the elasticÐplastic analysis of the moderately thin hemisphere
of Simo "0889#[ As in the previous example\ only small strains occur due to the thinness of the
shell[ Because of the increased thickness "h:R � 9[94 instead of 9[993 previously#\ the characteristic
wave length is increased as well\ and even the 7×7 mesh produces nicely converging results[ They
con_rm the results of the six!parameter shell element and the full three!dimensional analysis of
Roehl and Ramm "0885#[ However\ the solutions of Simo "0889# seem to be too soft for larger
deformations[

Additionally\ the results of a comprehensive set of numerical examples accounting also for _nite
elasticÐplastic strains with anisotropies and strain localization will be presented in Part II of this
paper[
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